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Spacetime as Manifold of Internal Symmetry Orbits
in External Symmetries
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Interactions and particles in the standard model are characterized by the action of internal
and external symmetry groups. The four symmetry regimes involved are related to
each other in the context of induced group representations. In addition to Wigner's
induced representations of external Poieamdup operations, parametrized by energy-
momenta, and the induced internal hyperisospin representations, parametrized by the
standard model Higgs field, the external operations, including the Lorentz group, can
also be considered to be induced by the internal operations of the hypercharge—isospin
group. In such an interpretation nonlinear spacetime is parametrized by the orbits of the
internal action group in the external action group.

1. INTRODUCTION

Particle physics as described in the standard model for electroweak and strong
interactions is characterized by four symmetry regimes. First one has the exter-
nal spacetime related transformation groups, the Lorentz g8@yfl, 3) with its
double coverSL(C?), and the internal compact groupsJ{1) for hypercharge,
SU(2) for isospin, andSU(3) for color acting on the quantum fields that describe
the interaction. From these symmetries for the interaction, one has to distinguish
sharply the external and internal symmetries for the asymptotic particle states. A
particle is characterized by one translation eigenvalue, its mass, and one space
rotation number, its spin for nontrivial mass, and its polarization for the mass-
less case. The rotation invariants are related to external subgroups SU@n
and polarizationrSO(2). With respect to the internal symmetry only an abelian
electromagnetitJ(1) remains as symmetry for the particles. Color symmetry is
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confined and hypercharge—isospin is spontaneously broken. The groups involved

Four Symmetry Regimes

Internal External
Interactions U(1) o [SU2) x SU)] SL(C?)
Particles U(1) SU(2), SO(2)

show subgroup relations in the vertical direction, that is from particles to inter-
actions® It will be argued later that there is also a horizontal subgroup relation
involved, that is from internal to external

spacetime
X
u@) — GL(C?)
T q energy-momenta
Higgs vectors ® D(1) x U(2) o SU(2)

u(1) D(1) x U(1)x SO(2)

In this diagram the external interaction group (upper right) is the Lorentz covering
groupSL(C?), supplemented with a dilatation groli§1) = expR (causal group)

and a phase groug(1) = exdR (fermion number group), that is the full linear
group GL (C?). A corresponding extension witBL (C) = U(1) x D(1) is used

for the external particle groups (lower right). For the internal interaction symme-
try (upper left), the color grouU(3) is omitted. The three arrows for inclusion
relations will be related below to induced representations. They are labeled with
manifold parameters, the Higgs parameters C 2 with |2 = M? > 0 for the
internal induction from particle symmetry (lower left) to interaction symmetry;
the mass shell energy-momenjas R*, with g2 = m? > 0 for the correspond-

ing external induction; and strictly future spacetime parameters R*, with

x2 > 0andx, > 0 parametrizing the induction from internal to external interac-
tion symmetries. To motivate and to understand these transmutations from groups
to subgroups is the aim of this paper.

3H. saller, hep-th/0010057.
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2. EXTERNAL TRANSMUTATION FROM PARTICLES
TO INTERACTIONS

According to Wigner (1939) particles are embedded into an irreducible defi-
nite unitary action of the PoincagroupR* % SOy(1, 3) as the semidirect product
of the orthochronous Lorentz gro@Dy(1, 3) with the spacetime translatioRs.
The infinite-dimensional Poincar§roup representations are induced (Folland,
1995; Mackey, 1968) by finite-dimensional irreducible representations of direct
product subgroups where the homogeneous factor comes from energy-momentum
fixgroups (“little groups”): The rest system rotatioB6X3) for energy-momenta
q € R* with g2 > 0, the noncompact groupOn(1, 2) for energy-momenta with
g? < 0, and the axial rotationSO(2) around the momentum direction as “fix-
group in the fixgroup’R? % SO(2) C SOy(1, 3) for nontrivial energy-momenta
with g% = 0. Only particles with the representations for causal momeghta 0
and compact little groupSQ(3) andSO(2) are found.

With respect to the halfinteger spin particles the twofold covering simply
connected groupSL(C?) > SU(2) for SOy(1, 3) > SO(3) are used

u e SUR2) = O(u)i = %tr uou*e® € SO(3) = SU(2)/1(2)

seSL(C) = A(s)) = %tr so's*5j € SOy(1,3) = SL(C?/I(2)

with centrSL(C?) = centrSU(2) = I(2) = {+1,}
The traces involve the hermitian

1,2,3

0,1,2,3

Therewith the twofold cover of the Poineagroup comes with the multiplica-
tion law

Pauli-Weyl matricess' = (13, 0%) = &, {Ia

i _ X:XJUJ-:(XO+_X3 xl—ixz)GR4
R* x SL(C?) > (x,s) with X1 +iX2  Xo— X3
X,8)o(X,8)=(X+Sox 0s*,5089)

The induction procedure used for massive and massless particles is symbol-
ized with the representation equivalence classpsas follows

rep[R x SU(2)] ¥ rep[R x SO2)] —2% rep[R* X SL(C?)]

The discrete invariantsRe N for SU(2) and+z € Z for SO(2) give spin and
polarization respectively, the continuous invaright= m? > 0 for the translations
gives the corresponding mass. According to Wigner's particle definition, confined
quarks are no particles.
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In the case of spi®U(2), the transition from a massive particle rest system,
defining a time direction, to the Lorentz group action compatible framework is
performed with the boost representations, parametrized by the three real numbers
in the energy-momenta

- >

s(ﬂ) _e% _ M+ [12 T } € SL(C?)
m 2m m+ Qo

B = % arctantl—

with { gg=/m?+qG2

s<%>m125* <%> = qgjo’!

In the case of polarizatio®O(2), the transition from a space system with the
distinguished polarization axis as third direction to a rotation group action com-
patible framework is performed with the two-sphere representations, parametrized
by the two real numbers in the momer?gg

-

- a5 3 4o
u<i)=éz= 'q'zq [12+i Gro }GSU(Z)

o] 2/g| Gl + a3
a = arctan'qT|
.l lal

Wlth qJ_ = (QZy _qll O)

G\ oo () as
= (Jo
<|q|)'q' <|q|> g

Such linear representations of coset representatives, stq%l)sand é(%) =
s*l*(%) for the boostsSL(C?)/SU(2) = SOy(1, 3)/SO(3) in the two fundamen-

tal Weyl representations (often introduced as solutions of the Dirac equation)
and u( ) for the two-sphere&sU(2)/SO(2) = SO(3)/SO(2) in the fundamental
Pauli representatlon will be called transmutators. They have a characteristic
hybrid transformation property: The left action with the subgroup gives the
transmutator for the transformed momenta up to a right action with the
subgroup

1 eSL(CH = ro s(%) = s(A(A) :

3la

)ou with u=u<ﬂ,k)eSU(2)
m

a)_ Y oa with a—a(d
veSU(Z):>vOu<|q|>_u<O(v) |a|> a with a a(lm,v)eSO(Z)
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External transmutators show up in the harmonic (Fourier) analysis of quan-
tum fields with respect to the particle—antiparticle (u, a) creation and annihilation
operators involved, for example for the left and right handed Weyl component of
a Dirac electron field

(ﬂ)Ae“MC@)+e*WwC@)
d3q m/c V2
(2r)? (leWW@—ymwﬁ)
S —_
m/c V2

The infinite dimensionalityR® cardinality) of the definite unitary rep3resentations
of the noncompact Poinaagroup is seen in the momentum integf::g”—';3 =
over all transmutators. GeRr’

Higher spin and polarization fields, for example the massive weak vector
bosons or the massless electromagnetic vector potential, need transmutators that
are products of the two fundamental Weyl transmutators and the fundamental Pauli
transmutator respectively, for example

i 1 ) 5

A<%)i =t s<%>o's*<%>a,- € SO(1, 3)

O e == —t - - S 3
<|q|>b 2"l ) g )0 €3

3. INTERNAL TRANSMUTATION FROM PARTICLES
TO INTERACTIONS

wm=(ﬁym=

In addition to the external rotation and translation properties particles are
characterized also by particle—antiparticlel) symmetries, for example the elec-
tromagnetic charge number or a fermion—antifermion number, for example for the
neutrinos or the neutron. In the standard model of electroweak interactions the elec-
tromagnetic real one-dimensional abelian intetd@l) symmetry is the only re-
maining symmetry from the real 12-dimensional rank 4 hyperisospin—color group.
Particles have no isospin or color symmetry. For example, the proton—neutron
doublet displays the isospin multiplicity too, but—with the different masses—no
isospinSU(2) symmetry.

In the standard model, the electromagnetic grblfp) is the only proper
fixgroup (“little group™) for the hyperisospin groug(2) acting on the complex
two-dimensional Hilbert space with the Higgs figkde C? with nontrivial scalar
product||®|?> = M? > 0. The internal induction from electromagneti€1) to
hyperisospinJ(2)

rep U(1) 2% rep U(2)
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is in analogy to the external inductions. The analogy to the rest systems, defined
by qu'j = ml, up to rotationsSO(3), and the polarization systems, defined by
Go = |Glo® up to axial rotationsSQ(2), is the electromagnetic system that is
defined by §) = () up to electromagnetic transformaticaiéz+*)% ¢ U(1),.

The internal induction employs the Higgs-field—defined transformation

) 1/ 92 o 18I = M*> 0
_ T 1 i
V<M>_M<—q>*l Cbz)eU(Z) with y P 0 _ (%
M M P

from the electromagnetic system to the hyperiso&f{2) compatible framework.
The Goldstone manifoltd(2)/U(1), involved is parametrized with the three real
parameters ir%. The hybrid transformation looks like

ueU@)=u oV(%) = v(u . %) ot with t=t(u) e U(1),

The transition from the interaction parametrizing fields with hyperisospin
symmetry to the particle electromagnetic symmetry is performed with the Higgs
transmutatov(%) (in analogy to the Weyl-Pauli transmutators), for example from
the left handed lepton isodoublét,(),—1 » to the left handed components for the
charged massive lepton field and its neutrino which, in turn, are transmuted to their
particle systems as described in the last section

A AX) =...
L(f =V(3) (vA) , v
M/ IAX) = ...
In contrast to the external case only compact groups are involved. Their irre-
ducible representations are finite-dimensional. Therefore there is no analogue to
the momentum integral, necessary for the infinite-dimensional representation of
the external noncompact groups.

Higher isospin fields, for example the isotriplet gauge field, need transmuta-
tors that are products of the fundamental Higgs transmutator, for example

o} (%): = :—thrv (%) T3v* <%> ® e SO3)

4. THE OPERATIONAL TRIUNIT:
INTERNAL-SPACETIME-EXTERNAL

The transition from the large operational symmetry group of the standard
model interactions to the small symmetry groups of the related particles involves
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the external Weyl—Pauli transmutations and the internal Higgs transmutation
rep[U(1) x R x SU(2)] W rep[U(1) x R x SO(2)]
-2 rep[U(2) x [R* X SL(CY)]]

If SU(3) color fields are included the right hand side has to be written with
the hyperisospin-color group (Hucks, 1991; Saller, 1992, 1993, 1994, 1998) whose
three factors are correlated via the centrif) x I(3) = 1(6) = {z€ Z | 2 = 1}
of the nonabelian factor

U(1) x SU(2) x SU3)
1(2) x 1(3)

For the following considerations the color group is excluded. It cannot be described
in the structures below, its occurence has to be explained differently, for example
as proposed in Saller (1998).

The three factors in the standard model interaction symntg@y x [R* X
SL(C?)] describe the internal operations, the spacetime translations and the homo-
geneous external operations respectively. Such a product constitutes a characteris-
tic structure (Folland, 1995; Fulton and Harris, 1991; Mackey, 1968) occuring for
representations of a group induced by representations of a subgralipgc G.

In the representation induction, which will be described in more detail below,
the groupG is decomposed into disjoint subgrouporbits and representatives
(U\G)repr for the cosetd) \G

G=Ux (U\G)repr: L"j Uk
reprk, €G

repU(L) —% repU@2 x 3) with U(2 x 3) =

For notational convenience the left clasddls that is theU orbits under left
multiplication are taken

ueU:L,:G — G, Ly(K) = uk

To establish the standard model operations as an example for the abstract
structure

U) x [R* X SL(C?)] < U x [(U\G)yepr X G

the Lorentz group cové3L(C?)is filled up by a phase(1) group (fermion number)
and a dilatation group(1) (causal group) to the full linear gro@L (C ?), a real
eight-dimensional Lie group

GL(C? = D(13) x UL(2)

4 Also see H. saller, hep-th/0010057.
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The direct unimodular factor involved is the centrally correlated product of two
normal subgroups, the fermion number and the Lorentz covering group

UL(2) = U(12) o SL(C?) = {g € GL(C?) | |deig| = 1}
UL (2)/SL(C?) = U(1)
U(12) N SL(C?) = 1(2) = {1z}, UL (2)/U(12) = SL(C?)/1(2)
= SOy(1, 3)

Therewith the triadU x [(U\G)repr;? G] of the internal-spacetime—external
transformations will be defined with a maximal compact subgitd($}), defining
the internal operations, in the full gro@l (C?), defining the external operations

operational triunitiy(2) x [D(2) x GL(C?)]

The manifold of hyperisospid(2) orbits in the full external groupL (C?) is areal
four-dimensional rank 2 symmetric spaR€?), which will be used as a model for
nonlinear spacetime (Saller, 1997, 1998b). It has as representatives the hermitian
invertible 2 x 2 matrices, which can also be parametrized by the translations of
the strictly future lightcone

(U@)\GL(C))epr = D(2) = {k €GL(CY) k=K' = (lffiikk“z 'f;:ﬂ'fj)

and spe& > O}

All 2 x 2 matrices withJ(2) conjugation constitute @* algebra with the natural
spectral order and the polar decomposition of the full group into internal compact
operations and noncompact spacetime

GL(C?) =U(2) x D(2), k=uolk|, |kl=+k: ok

Inthe general structure, the groGacts on the left orbitslk of a subgroup)
by right inverse multiplication, which may look quite complicated for the chosen
orbit representatives

geG:Ry:U\G — U\G, Ry(Uk)=Ukg™
(U\G)repr - (U\G)repn ki —> k- for k,-97l = uk
with u=u(k,gHeU

In the physical structure proposed one obtains the action of the full external group
GL (C?) on the nonlinear spacetini¥(2)

g e GL(C?: D) — D(2), |kl +— |K| for |klog™t=uolK|

with u=u(kl,g™") eU@)= K| =ygolk?ogt=lkog™
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The tangent space of the symmetric sp8¢@) constitutes the spacetime
translations with the faithful action of the causal Lorentz group
logD(2) = {x =xjo! | & = k| € D(2)} = R*

Boticg

g=¢e 2 seGL(C?»:x+—> goxog*

= %tr ga‘g*&,— =ePA(s) € D(1) x SOy(1, 3)= GL(C?)/U(1L,)

5. INTERNAL-EXTERNAL ACTIONS ON STANDARD
MODEL FIELDS

The transformation behavior of fields with respect to external Lorentz and
internal hyperisospin operations is quite differents: The fields used in the standard
model with the operations(2) x [R* x GL(C?)], for example the left handed
lepton isodouble{L 2}2=1"%, map the spacetime translatioRS into a complex

vector space
LARY — WV,  x— LAKX)

The value space is the tensor product of a finite-dimensional 3pawséh the
representation of hyperisosgii{2), in the lepton isodoublet example the defining
representation oV = C? with U(1)-hypercharge numbegr= —1/2

—iylpHiE
2

D : U(2) — GL(W), Du=u=e
U@2) x W — W, u-L2=ufL}

and another finite-dimensional vector sp&aeith a Lorentz group representation,
in the example the defining left handed Weyl representatiov éaC?

T : SL(C?) —s GL(V), T(s)=s= glia+h)3

Since the spacetime translatidi$are also acted upon with the Lorentz group, the
field as a mapping between two vector spaces with Lorentz group action transforms
L —> L as given by the commutative diagram Bourbaki (1989)

A(9)
4 4
Llﬁ—”ﬁL A = A(S) € SOu(L, 3)
VT T s’ Ls(A-X)=s-L(X)

SLC?) x VT — VT, (L) =LE(At x)sh

For notational convenience the dual sp&ce(linearV forms) is used.
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Both internal and external transformation behavior can be collected into one
diagram, for example for the lepton isodoublet left handed Weyl field here

A(s)
R* — R*
e I LR =ulLB(A™t - )sh
WeVl — We VT
u®s

or for the isotriplet gauge vector fielmé};(l’é:gavalued in the vector space

W/®V,TEC3®C4

A(s)
R4 R4 . 3 .
s L AL A0 =O0RAKA A
wW ® V/T N W ® V/T ’ 0= O(U) € SO(S)
O(U)®A(s)

These transformation properties are compared in the next sections with the
transformation properties occuring for induced representations.

6. INDUCED REPRESENTATIONS

The structure of induced representations as used for example for Wigner's par-
ticles classification can be sketched for our purposes—without discussion of topo-
logical structures—as follows (Folland, 1995; Fulton and Harris, 1991; Mackey,
1968):

A group G representation induced by the representation of a subgBoup
U — GL (W) on a complex vector space acts on the subgroup interwiners, that
is on the mappings from the gro@into the vector space/, compatible with the
action ofU on G by left multiplication and orV by the representatiob

Ly
G— G
w !l l w, WK =D@)-wk) forallueU, keG
W — W
D(u)

The intertwiner space dimensionality is the product of\ithéimensionality with
the cardinality of th&J orbits, that is in general infinite for Lie groups

dimg Wy (G) = dimgW - cardU \G

The groupG action on the vector space with the intertwinere W, (G) is
defined by the following commutative diagram, which involves the right inverse
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multiplication k — kg~ on the groupG, not used in the definition of the
intertwiners

Ry
—

G
w l Wq, wg(k) =w(kg) forallke G, ge G
W

20

—>
IdW

G x Wy (G) — Wy (G), W —> Wy

Again, both diagrams can be taken together. With a decompositiotJiratidoits
and representatives = U x (U\G)repr = |4 Uk, the inducedG representation
reads '

LuoRy
G — G Wg(uk) = D(u) -w(kg) forallueU, ke G,ge G
wl L ws,  wgk) = D(u)-w(k) for kg=uk with
W — W u=uk,g)eU
D(u)o idw

7. TRANSMUTATORS

In general, an induce@ representation is infinite-dimensional and—in many
cases, for example for compact groups—highly reducible, for example the right
regular representation on the algelitéG) = {G — C} with the group func-
tions, which is induced by the trivial representation of the trivial subgtdup {e}
on the number§& , or theG representation on an intertwiner spattg (G).

The group function< (G) contain—up to isomorphy—the representation
space of each finite-dimensioralrepresentation

T:G— GL(V)
via the representation matrix elements, isomorphi¢ ® V'
T(@Q) : V—V
TV:G—C
VeV ={T/|veV,weV'}cC(G) with | Tk = (e, T(K) V)
TY(kg) = T, @Y (K)

A decomposition of & representation intt) representations with projec-
tors{P,},

V=@W, TU]-W.cW, Tlu=D=@D,
L L

P,V — W, D, :U—GL(W), D(u):W — W,



1556 Saller

and an orbit decomposition of the full gro@= U x (U\G)epr = |4, Uk; give
rise to transmutators that are valued in the ten¥4r® V' as products of th&
spaceV and aU subspacé&V,

T:G— WV, T(uk)=D,U)oPjoT(k) : V — W,

If V=CP", thenT(k) has am x n matrix form. If W, = C™ with m < n, then
D, (u) has arm x m matrix form andT,(k;) anm x n matrix form.

All “right-sided” matrix elements of a transmutator constitut&astable
subspace of the intertwiners

TV :G— W,
WoVT={T'|veV}cWu(G) with {T'(uk)=D(uoPjoT(k): Vv
TY(kg) = T.9" (k)

Therewith the intertwiner spad¥{, (G) contains—up to isomorphy—all ten-
sor productdV ® VT, whereV is acted on with a finite-dimensional subrepre-
sentation of the full grou®

DIU]-WCT[G]-V=WgVT < Wy(G)

U\G transmutators for irreducibl& representations are building blocks of in-
duced representations. They transform from a vector sgasith the action of a
groupG to a vector subspad#/ with the action of a subgroug. Transmutators
with W = V are called complete, that is all representations contained in the
G representation are included. Complete transmutators are bijections.

8. FIELDS AS INTERNAL-EXTERNAL TRANSMUTATORS

Spacetime field®@ for the operational triunity x [(U\G)repr x G] will be
defined to be transmutators from external gr@sipepresentations on a vector
spaceV to internal subgroup) representations on a vector subsp@terhey are
parametrized with the orbit manifold\ G of the possibléJ’s in G

U x W — W (internal)
T (U\G)repr — W® VT, 1GxV —V (external)
UucG, WcCV

The geometrical structure can be formulated also in a bundle language.

The internal hyperisospin groug(2) is a maximal compact subgroup of
the external grousL (C?) = D(1,) x UL (2) with the causal group and the uni-
modular fermion-number—Lorentz-group cougt (2) = U(1,) o SL(C?) as di-
rect factors. Nonlinear spacetini#(2) parametrizes the noncompact manifold
UQ)\GL(C?).
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8.1. The Fundamental Transmutator on Nonlinear Spacetime

The fundamental spacetime field for the operational triunit
U(2) x [D(2) x GL(C?)]

transmutes from the defining internd(2)-isodoublet space/ = C? to the defin-
ing externalSL(C?)-Weyl spinor spac®/ = C2

A DR2)— WRVT, |kl — BA(K|)
It has the internall(2) and the externabL (C2) transformation behavior
U2 x W — W, ¥+ uiw)
GL(CH) xV — V, W2(klg) = 2 (kI)gg = u(kl, 9)s ¥4 (lk o gl)

Since the nonlinear spacetime manifold can be parametrized as the strictly future
lightconeD(2) = R? c R*, |k| = x,, of its tangent space, the spacetime trans-
lations logD(2) = R*, the fundamental isospinor Weyl spinor field has causal
support without spacelike particle interpretable contributions. Its spectrum with
respect to the action of the causal grdDfl) has to be investigated to find its
particle interpretable content that can be defined for all spacetime transl&fions
First steps on this way have been tried previo@sly.

The fundamental isospinor—spinor dy{aﬂf}f:ll;zz for the hyperisospitl(2)
orbits in the extended Lorentz gro@i (C?) can be seen in some analogy (saller,
1998b) to the tetramﬁf}fjg‘ll”i’g in general relativity for the orbits of the Lorentz

groupSQy(1, 3) in the general linear groupL (R%).

8.2. Standard Model Fields as Transmutators on Linear Spacetime

Without being able so far to determine the spectrum of the causal group action
on the fundamental transmutator for a particle interpretation one may start less
ambitiously and try to interpret the standard model fields as a linear approximation,
thatis as inte4rna|—externa| transmutators parametrized with spacetime translations
logD(2) = R

U2) x [R* X GL(C?)]

Any representation of agroup : G — GL (V) is faithful up to its kernel,
a normalG subgroup, that iD[G] = G/kernD. Therefore the representations of
the internal hyperisospin grol(2) = U(1,) o SU(2) with U(12) N SU(2) = 1(2)
have as nontrivial images three groups — the full hyperisospin, the hypercharge,

5H. saller, hep-th/0010057.
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and the isorotation group
U(2)-representation imagdd(2), U(1) = U(2)/SU(2)
SO(3) = U(2)/U(12)
to be compared with the three nontrivial representation images of the external uni-
modular group, given by the full group, the fermion number and the Lorentz group
UL (2)-representation imagesL (2), U(1) = UL (2)/SL(C?)
SGp(1, 3)= UL(2)/U(12)
There are three nontrivial internal-external embeddings — hyperiso¢p)n

and hyperchargel(1) into the fermion-number—Lorentz-grolfi (2) and isoro-
tationsSO(3) into the Lorentz grou@Oy(1, 3)

U@2) = UL(2), U()< UL(2), SO3)<> SOn(1,3)

In the standard model the left handed Weyl isodoublet figlthe right handed

Weyl isosinglet fielddR and the Lorentz vector isosinglet—isotriplet gauge fields

A are the corresponding transmutators, as mappings from the coset tangent space
log(U\G)rep —> W ® VT into an internal-external vector space tensor product
with the faithful action of the represented imadeg)] ® T[G]

L:R*— C2@C? with U(2)® UL(C?
X — LA(X), a=12A=12
R:R*— C?®C? with U(1)® UL(C?

x— RP(x), A=1,2
A:R*— C*®C* with SO(3) x SOy(1, 3)
X — Alx), a=1,23j=0,123

There are two fermionic and one bosonic transmutator. With coinciding internal
and external representation space all three transmutators are complete. The right
handed two-component Weyl field comprises two isosingletfR1, R,}, and
the four-component Lorentz vector fiekd four internal degrees of freedom, an
isosinglet and an isotriplgg, A}.

The transition from those standard fields for the interactions to particles for the
state space requires internal transmutators, parametrized with the Higgs degrees
of freedom (Goldstone manifold), as discussed previously herein,

v 1 (U(2)/U))repr — C2@ C? with U(1)® U(2)

P o \1?
M|—>V<M> , a=1,2

o
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and external Weyl-Pauli transmutators, parametrized with the momenta as coset
representatives (boost manifold, two-sphere)

S,8 1 (SL(CH)/SUR2))epr — C?®C? with SU(2) ® SL(C?)

A A
3H3<3) ,§<3) . C=12AA=12
m m/." "\m).

u : (SU2)/SOR))epr —> C*® C? with SO(2) ® SU(2)

i — u(i) , a=1,2
[ql 1al/ 1,2

The operational triunits for the internal and external interaction-particle transmu-
tations are

Higgs:  U(1) x [(U(2)/U(1); )repr x U(2)]
Weyl: SU(2) x [(SL(C?)/SU2))epr x SL(C?)]
Pauli: SO(2) x [(SU(2)/SO2))epr x SU2)]
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