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Interactions and particles in the standard model are characterized by the action of internal
and external symmetry groups. The four symmetry regimes involved are related to
each other in the context of induced group representations. In addition to Wigner’s
induced representations of external Poincar´e group operations, parametrized by energy-
momenta, and the induced internal hyperisospin representations, parametrized by the
standard model Higgs field, the external operations, including the Lorentz group, can
also be considered to be induced by the internal operations of the hypercharge–isospin
group. In such an interpretation nonlinear spacetime is parametrized by the orbits of the
internal action group in the external action group.

1. INTRODUCTION

Particle physics as described in the standard model for electroweak and strong
interactions is characterized by four symmetry regimes. First one has the exter-
nal spacetime related transformation groups, the Lorentz groupSO0(1, 3) with its
double coverSL(C2), and the internal compact groups –U(1) for hypercharge,
SU(2) for isospin, andSU(3) for color acting on the quantum fields that describe
the interaction. From these symmetries for the interaction, one has to distinguish
sharply the external and internal symmetries for the asymptotic particle states. A
particle is characterized by one translation eigenvalue, its mass, and one space
rotation number, its spin for nontrivial mass, and its polarization for the mass-
less case. The rotation invariants are related to external subgroups – spinSU(2)
and polarizationSO(2). With respect to the internal symmetry only an abelian
electromagneticU(1) remains as symmetry for the particles. Color symmetry is
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confined and hypercharge–isospin is spontaneously broken. The groups involved

Four Symmetry Regimes

Internal External

Interactions U(1) ◦ [SU(2)× SU(3)] SL(C2)
Particles U(1) SU(2), SO(2)

show subgroup relations in the vertical direction, that is from particles to inter-
actions.3 It will be argued later that there is also a horizontal subgroup relation
involved, that is from internal to external

spacetime
xÂ

U(2) −→ GL( 2)

Higgs vectors 8

↑ q energy-momenta

U(1)
D(1) × U(1) ◦ SU(2)
D(1) × U(1)× SO(2)

↑
C

In this diagram the external interaction group (upper right) is the Lorentz covering
groupSL(C2), supplemented with a dilatation groupD(1)= expR (causal group)
and a phase groupU(1)= expiR (fermion number group), that is the full linear
groupGL (C2). A corresponding extension withGL (C) = U(1)× D(1) is used
for the external particle groups (lower right). For the internal interaction symme-
try (upper left), the color groupSU(3) is omitted. The three arrows for inclusion
relations will be related below to induced representations. They are labeled with
manifold parameters, the Higgs parameters8 ∈ C 2 with ‖8‖2 = M2 > 0 for the
internal induction from particle symmetry (lower left) to interaction symmetry;
the mass shell energy-momentaq ∈ R4, with q2 = m2 ≥ 0 for the correspond-
ing external induction; and strictly future spacetime parametersxÂ ∈ R4, with
x2
Â > 0 andxÂ0 > 0 parametrizing the induction from internal to external interac-

tion symmetries. To motivate and to understand these transmutations from groups
to subgroups is the aim of this paper.

3 H. saller, hep-th/0010057.
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2. EXTERNAL TRANSMUTATION FROM PARTICLES
TO INTERACTIONS

According to Wigner (1939) particles are embedded into an irreducible defi-
nite unitary action of the Poincar´e groupR4 ←× SO0(1, 3) as the semidirect product
of the orthochronous Lorentz groupSO0(1, 3) with the spacetime translationsR4.
The infinite-dimensional Poincar´e group representations are induced (Folland,
1995; Mackey, 1968) by finite-dimensional irreducible representations of direct
product subgroups where the homogeneous factor comes from energy-momentum
fixgroups (“little groups”): The rest system rotationsSO(3) for energy-momenta
q ∈ R4 with q2 > 0, the noncompact groupSO0(1, 2) for energy-momenta with
q2 < 0, and the axial rotationsSO(2) around the momentum direction as “fix-
group in the fixgroup”R2 ←× SO(2)⊂ SO0(1, 3) for nontrivial energy-momenta
with q2 = 0. Only particles with the representations for causal momentaq2 ≥ 0
and compact little groupsSO(3) andSO(2) are found.

With respect to the halfinteger spin particles the twofold covering simply
connected groupsSL(C2) ⊃ SU(2) for SO0(1, 3)⊃ SO(3) are used

u ∈ SU(2)⇒ O(u)a
b =

1

2
tr uσ au∗σ b ∈ SO(3) ∼= SU(2)/I(2)

s ∈ SL(C2)⇒ 3(s)i
j =

1

2
tr sσ i s∗σ̌ j ∈ SO0(1, 3) ∼= SL(C2)/I(2)

with centrSL(C2) = centrSU(2)= I(2)= {±12}
The traces involve the hermitian

Pauli–Weyl matrices:σ i = (12, σ a) = σ̌i ,

{
a = 1, 2, 3
i = 0, 1, 2, 3

Therewith the twofold cover of the Poincar´e group comes with the multiplica-
tion law

R4 ←× SL(C2) 3 (x, s) with

 x = xjσ
j =

(
x0+ x3 x1− i x2

x1+ i x2 x0− x3

)
∈ R4

(x, s) ◦ (x′, s′) = (x + s ◦ x′ ◦ s∗, s ◦ s′)

The induction procedure used for massive and massless particles is symbol-
ized with the representation equivalence classesrep as follows

rep[R× SU(2)] ] rep[R× SO(2)]
ind7−→ rep[R4 ←× SL(C2)]

The discrete invariants 2J ∈ N for SU(2) and±z ∈ Z for SO(2) give spin and
polarization respectively, the continuous invariantq2 = m2 ≥ 0 for the translations
gives the corresponding mass. According to Wigner’s particle definition, confined
quarks are no particles.
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In the case of spinSU(2), the transition from a massive particle rest system,
defining a time direction, to the Lorentz group action compatible framework is
performed with the boost representations, parametrized by the three real numbers
in the energy-momentaqm

s

(
q

m

)
= e

Eβ Eσ
2 =

√
m+ q0

2m

[
12+ EqEσ

m+ q0

]
∈ SL(C2)

with



Eβ = Eq|Eq| arctanh
|Eq|
q0

q0 =
√

m2+ Eq2

s

(
q

m

)
m12s∗

(
q

m

)
= qjσ

j

In the case of polarizationSO(2), the transition from a space system with the
distinguished polarization axis as third direction to a rotation group action com-
patible framework is performed with the two-sphere representations, parametrized
by the two real numbers in the momentaEq|Eq|

u

( Eq
|Eq|
)
= ei Eα Eσ2 =

√
|Eq| + q3

2|Eq|
[
12+ i

Eq⊥ Eσ
|Eq| + q3

]
∈ SU(2)

with



Eα = Eq⊥|Eq⊥| arctan
|Eq⊥|
|Eq|

Eq⊥ = (q2,−q1, 0)

u

( Eq
|Eq|
)
|Eq|σ 3u∗

( Eq
|Eq|
)
= EqEσ

Such linear representations of coset representatives, heres( q
m) and ŝ( q

m) =
s−1∗( q

m) for the boostsSL(C2)/SU(2)∼= SO0(1, 3)/SO(3) in the two fundamen-
tal Weyl representations (often introduced as solutions of the Dirac equation)
andu( Eq|Eq| ) for the two-sphereSU(2)/SO(2)∼= SO(3)/SO(2) in the fundamental
Pauli representation, will be called transmutators. They have a characteristic
hybrid transformation property: The left action with the subgroup gives the
transmutator for the transformed momenta up to a right action with the
subgroup

λ ∈ SL(C2)⇒ λ ◦ s

(
q

m

)
= s

(
3(λ) · q

m

)
◦ u with u = u

(
q

m
, λ

)
∈ SU(2)

v ∈ SU(2)⇒ v ◦ u

( Eq
|Eq|
)
= u

(
O(v) · Eq|Eq|

)
◦ a with a= a

( Eq
|Eq| , v

)
∈ SO(2)
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External transmutators show up in the harmonic (Fourier) analysis of quan-
tum fields with respect to the particle–antiparticle (u, a) creation and annihilation
operators involved, for example for the left and right handed Weyl component of
a Dirac electron field

Ψ(x) =
(

r Ȧ

l A

)
(x) =

∫
d3q

(2π )3


s

(
q

m

)Ȧ

C

exiquC(Eq)+ e−xiqawC(Eq)√
2

ŝ

(
q

m

)A

C

exiquC(Eq)− e−xiqawC(Eq)√
2


The infinite dimensionality (R3 cardinality) of the definite unitary representations
of the noncompact Poincar´e group is seen in the momentum integral

∫ d3q
(2π )3
∼= ⊕
Eq∈R3over all transmutators.

Higher spin and polarization fields, for example the massive weak vector
bosons or the massless electromagnetic vector potential, need transmutators that
are products of the two fundamental Weyl transmutators and the fundamental Pauli
transmutator respectively, for example

3

(
q

m

)i

j

= 1

2
tr s

(
q

m

)
σ i s∗

(
q

m

)
σ̌ j ∈ SO0(1, 3)

O

( Eq
|Eq|
)a

b

= 1

2
tr u

( Eq
|Eq|
)
σ au∗

( Eq
|Eq|
)
σ b ∈ SO(3)

3. INTERNAL TRANSMUTATION FROM PARTICLES
TO INTERACTIONS

In addition to the external rotation and translation properties particles are
characterized also by particle–antiparticleU(1) symmetries, for example the elec-
tromagnetic charge number or a fermion–antifermion number, for example for the
neutrinos or the neutron. In the standard model of electroweak interactions the elec-
tromagnetic real one-dimensional abelian internalU(1) symmetry is the only re-
maining symmetry from the real 12-dimensional rank 4 hyperisospin–color group.
Particles have no isospin or color symmetry. For example, the proton–neutron
doublet displays the isospin multiplicity too, but—with the different masses—no
isospinSU(2) symmetry.

In the standard model, the electromagnetic groupU(1) is the only proper
fixgroup (“little group”) for the hyperisospin groupU(2) acting on the complex
two-dimensional Hilbert space with the Higgs field8 ∈ C2 with nontrivial scalar
product‖8‖2 = M2 > 0. The internal induction from electromagneticU(1) to
hyperisospinU(2)

rep U(1)
ind7−→ rep U(2)
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is in analogy to the external inductions. The analogy to the rest systems, defined
by qjσ

j = m12 up to rotationsSO(3), and the polarization systems, defined by
EqEσ = |Eq|σ 3 up to axial rotationsSO(2), is the electromagnetic system that is
defined by (81

82
) = ( 0

M ) up to electromagnetic transformationsei (12+τ 3)γ0 ∈ U(1)+.
The internal induction employs the Higgs-field–defined transformation

v

(
8

M

)
= 1

M

(
8?2 81

−8?1 82

)
∈ U(2) with


‖8‖2 = M2 > 0

v

(
8

M

)(
0
M

)
=
(
81

82

)
from the electromagnetic system to the hyperisospinU(2) compatible framework.
The Goldstone manifoldU(2)/U(1)+ involved is parametrized with the three real
parameters in8M . The hybrid transformation looks like

u ∈ U(2)⇒ u ◦ v

(
8

M

)
= v

(
u · 8

M

)
◦ t with t = t(u) ∈ U(1)+

The transition from the interaction parametrizing fields with hyperisospin
symmetry to the particle electromagnetic symmetry is performed with the Higgs
transmutatorv( 8M ) (in analogy to the Weyl–Pauli transmutators), for example from
the left handed lepton isodoublet (Lα)α=1,2 to the left handed components for the
charged massive lepton field and its neutrino which, in turn, are transmuted to their
particle systems as described in the last section

L A
α = v

(
8

M

)
α

(
νA

l A

)
,

{
νA(x) = . . .
l A(x) = . . .

In contrast to the external case only compact groups are involved. Their irre-
ducible representations are finite-dimensional. Therefore there is no analogue to
the momentum integral, necessary for the infinite-dimensional representation of
the external noncompact groups.

Higher isospin fields, for example the isotriplet gauge field, need transmuta-
tors that are products of the fundamental Higgs transmutator, for example

O

(
8

M

)a

b

= 1

2
tr v

(
8

M

)
τ av∗

(
8

M

)
τ b ∈ SO(3)

4. THE OPERATIONAL TRIUNIT:
INTERNAL–SPACETIME–EXTERNAL

The transition from the large operational symmetry group of the standard
model interactions to the small symmetry groups of the related particles involves
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the external Weyl–Pauli transmutations and the internal Higgs transmutation

rep [U(1)× R× SU(2)] ] rep[U(1)× R× SO(2)]

ind7−→ rep[U(2) × [R4 ←× SL(C2)]]

If SU(3) color fields are included the right hand side has to be written with
the hyperisospin-color group (Hucks, 1991; Saller, 1992, 1993, 1994, 1998) whose
three factors are correlated via the centrumI(2)× I(3)= I(6)= {z ∈ Z | z6 = 1}
of the nonabelian factor

rep U(1)
ind7−→ rep U(2× 3) with U(2× 3)= U(1)× SU(2)× SU(3)

I (2)× I (3)

For the following considerations the color group is excluded. It cannot be described
in the structures below, its occurence has to be explained differently, for example
as proposed in Saller (1998).4

The three factors in the standard model interaction symmetryU(2)× [R4 ←×
SL(C2)] describe the internal operations, the spacetime translations and the homo-
geneous external operations respectively. Such a product constitutes a characteris-
tic structure (Folland, 1995; Fulton and Harris, 1991; Mackey, 1968) occuring for
representations of a groupG induced by representations of a subgroupU ⊆ G.
In the representation induction, which will be described in more detail below,
the groupG is decomposed into disjoint subgroupU orbits and representatives
(U\G)repr for the cosetsU\G

G = U × (U\G)repr=
⊎

reprkr∈G

Ukr

For notational convenience the left classesUk, that is theU orbits under left
multiplication are taken

u ∈ U : Lu : G −→ G, Lu(k) = uk

To establish the standard model operations as an example for the abstract
structure

U(2)× [R4 ←× SL(C2)]
?∼ U × [(U\G)repr

←× G]

the Lorentz group coverSL(C2) is filled up by a phaseU(1) group (fermion number)
and a dilatation groupD(1) (causal group) to the full linear groupGL (C 2), a real
eight-dimensional Lie group

GL (C2) = D(12)× UL (2)

4 Also see H. saller, hep-th/0010057.
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The direct unimodular factor involved is the centrally correlated product of two
normal subgroups, the fermion number and the Lorentz covering group

UL (2) = U(12) ◦ SL(C2) = {g ∈ GL (C2) | |detg| = 1}

U(12) ∩ SL(C2) = I(2)= {±12},
UL (2)/SL(C2) ∼= U(1)

UL (2)/U(12) ∼= SL(C2)/I(2)
∼= SO0(1, 3)

Therewith the triadU × [(U\G)repr
←× G] of the internal–spacetime–external

transformations will be defined with a maximal compact subgroupU(2), defining
the internal operations, in the full groupGL (C2), defining the external operations

operational triunit:U(2)× [D(2)
←× GL (C2)]

The manifold of hyperisospinU(2) orbits in the full external groupGL (C2) is a real
four-dimensional rank 2 symmetric spaceD(2), which will be used as a model for
nonlinear spacetime (Saller, 1997, 1998b). It has as representatives the hermitian
invertible 2× 2 matrices, which can also be parametrized by the translations of
the strictly future lightcone

(U(2)\GL (C2))repr= D(2)=
{

k ∈ GL (C2) | k = k∗ =
(

k0+ k3 k1− ik2

k1+ ik2 k0− k3

)
and speck > 0

}
All 2 × 2 matrices withU(2) conjugation constitute aC∗ algebra with the natural
spectral order and the polar decomposition of the full group into internal compact
operations and noncompact spacetime

GL (C2) = U(2)× D(2), k = u ◦ |k|, |k| =
√

k∗ ◦ k

In the general structure, the groupG acts on the left orbitsUk of a subgroupU
by right inverse multiplication, which may look quite complicated for the chosen
orbit representatives

g ∈ G : Rg : U\G −→ U\G, Rg(Uk) = Ukg−1

(U\G)repr−→ (U\G)repr, kr 7−→ kr ′ for kr g−1 = ukr ′

with u = u(kr , g−1) ∈ U

In the physical structure proposed one obtains the action of the full external group
GL (C2) on the nonlinear spacetimeD(2)

g ∈ GL (C2) : D(2)−→ D(2), |k| 7−→ |k′| for |k| ◦ g−1 = u ◦ |k′|
with u = u(|k|, g−1) ∈ U(2)⇒ |k′| =

√
g−1∗ ◦ |k|2 ◦ g−1 = |k ◦ g−1|
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The tangent space of the symmetric spaceD(2) constitutes the spacetime
translations with the faithful action of the causal Lorentz group

logD(2) = {x = xjσ
j | ex = |k| ∈ D(2)} ∼= R4

g = e
β0+iα0

2 s ∈ GL (C2) : x 7−→ g ◦ x ◦ g∗

⇒ 1

2
tr gσ i g∗σ̌ j = eβ03(s) ∈ D(1)× SO0(1, 3)∼= GL (C2)/U(12)

5. INTERNAL–EXTERNAL ACTIONS ON STANDARD
MODEL FIELDS

The transformation behavior of fields with respect to external Lorentz and
internal hyperisospin operations is quite differents: The fields used in the standard
model with the operationsU(2)× [R4 ←× GL (C2)], for example the left handed
lepton isodoublet{L A

α }A=1,2
α=1,2, map the spacetime translationsR4 into a complex

vector space

L A
α : R4 −→ W⊗ VT, x 7−→ L A

α (x)

The value space is the tensor product of a finite-dimensional spaceW with the
representation of hyperisospinU(2), in the lepton isodoublet example the defining
representation onW ∼= C2 with U(1)-hypercharge numbery = −1/2

D : U(2) −→ GL (W), D(u) = u = e
−i γ012+i Eγ Eτ

2

U(2)×W −→ W, u · L A
α = uβαL A

β

and another finite-dimensional vector spaceVwith a Lorentz group representation,
in the example the defining left handed Weyl representation onV ∼= C2

T : SL(C2) −→ GL (V), T(s) = s= e(i Eα+Eβ) Eσ2

Since the spacetime translationsR4 are also acted upon with the Lorentz group, the
field as a mapping between two vector spaces with Lorentz group action transforms
L 7−→ L s as given by the commutative diagram Bourbaki (1989)

Λ(s)

R4 −→ R4

L ↓ ↓ L s

VT −→ VT

s

,
3 = 3(s) ∈ SO0(1, 3)
L s(3 · x) = s · L (x)

SL(C2)× VT −→ VT , (L s)
A
α (x) = L B

α (3−1 · x)sA
B

For notational convenience the dual spaceVT (linearV forms) is used.
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Both internal and external transformation behavior can be collected into one
diagram, for example for the lepton isodoublet left handed Weyl field here

Λ(s)

R4 −→ R4

L ↓ ↓ L s

W⊗ VT −→ W⊗ VT

u⊗s

, (L s)
A
α (x) = uβαL B

β (3−1 · x)sA
B

or for the isotriplet gauge vector field{A j
a} j=0,1,2,3

a=1,2,3 valued in the vector space
W′ ⊗ V ′T ∼= C 3⊗ C 4

Λ(s)

R4 −→ R4

A ↓ ↓ As

W′ ⊗ V ′T −→ W′ ⊗ V ′T
O(u)⊗3(s)

, (As)
j
a(x) = Ob

aAk
b(3−1 · x)3 j

k
O = O(u) ∈ SO(3)

These transformation properties are compared in the next sections with the
transformation properties occuring for induced representations.

6. INDUCED REPRESENTATIONS

The structure of induced representations as used for example for Wigner’s par-
ticles classification can be sketched for our purposes—without discussion of topo-
logical structures—as follows (Folland, 1995; Fulton and Harris, 1991; Mackey,
1968):

A group G representation induced by the representation of a subgroupD :
U −→ GL (W) on a complex vector space acts on the subgroup interwiners, that
is on the mappings from the groupG into the vector spaceW, compatible with the
action ofU on G by left multiplication and onV by the representationD

Lu

G −→ G
w ↓ ↓ w,

W −→ W
D(u)

w(uk) = D(u) · w(k) for all u ∈ U, k ∈ G

The intertwiner space dimensionality is the product of theW dimensionality with
the cardinality of theU orbits, that is in general infinite for Lie groups

dimCI WU (G) = dimCIW · cardU\G
The groupG action on the vector space with the intertwinersw ∈ WU (G) is

defined by the following commutative diagram, which involves the right inverse
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multiplication k 7−→ kg−1 on the groupG, not used in the definition of the
intertwiners

Rg

G −→ G
w ↓ ↓ wg,

W −→ W
idW

wg(k) = w(kg) for all k ∈ G, g ∈ G

G×WU (G) −→ WU (G), w 7−→ wg

Again, both diagrams can be taken together. With a decomposition intoU orbits
and representativesG = U × (U\G)repr=

⊎
r

Ukr the inducedG representation
reads

Lu◦Rg

G −→ G
w ↓ ↓ wg,

W −→ W
D(u)◦ idW

wg(uk) = D(u) · w(kg) for all u ∈ U, k ∈ G, g ∈ G
wg(kr ) = D(u) · w(kr ′ ) for kr g = ukr ′ with

u = u(kr , g) ∈ U

7. TRANSMUTATORS

In general, an inducedG representation is infinite-dimensional and—in many
cases, for example for compact groups—highly reducible, for example the right
regular representation on the algebraC (G) = {G −→ C } with the group func-
tions, which is induced by the trivial representation of the trivial subgroupU = {e}
on the numbersC , or theG representation on an intertwiner spaceWU (G).

The group functionsC (G) contain—up to isomorphy—the representation
space of each finite-dimensionalG representation

T : G −→ GL (V)

via the representation matrix elements, isomorphic toV ⊗ VT

T(g) : V −→ V

V ⊗ VT ∼= {Tv
ω

∣∣ v ∈ V, ω ∈ VT
} ⊂ C (G) with


Tv
ω : G −→ C

Tv
ω (k) = 〈ω, T(k) · v〉

Tv
ω (kg) = TT(g)·v

ω (k)

A decomposition of aG representation intoU representations with projec-
tors{Pι}ι

V =⊕
ι

Wι, T [U ] ·Wι ⊆ Wι, T |U = D =⊕
ι

Dι

Pι : V −→ Wι, Dι : U −→ GL (Wι), Dι(u) : Wι −→ Wι
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and an orbit decomposition of the full groupG = U × (U\G)repr=
⊎

r Ukr give
rise to transmutators that are valued in the tensorsWι ⊗ VT as products of theG
spaceV and aU subspaceWι

Tι : G −→ Wι ⊗ VT , Tι(ukr ) = Dι(u) ◦ P j ◦ T(kr ) : V −→ Wι

If V ∼= C n, thenT(k) has ann× n matrix form. If Wι
∼= C m with m≤ n, then

Dι(u) has anm×m matrix form andTι(kr ) anm× n matrix form.
All “right-sided” matrix elements of a transmutator constitute aG-stable

subspace of theU intertwiners

Wι ⊗ VT ∼= {Tv
ι

∣∣ v ∈ V
} ⊂Wι,U (G) with


Tv
ι : G −→ Wι

Tv
ι (ukr ) = Dι(u) ◦ P j ◦ T(kr ) · v

Tv
ι (kg) = TT(g)·v

ι (k)

Therewith the intertwiner spaceWU (G) contains—up to isomorphy—all ten-
sor productsW⊗ VT , whereV is acted on with a finite-dimensional subrepre-
sentation of the full groupG

D[U ] ·W ⊆ T [G] · V ⇒ W⊗ VT ↪→ WU (G)

U\G transmutators for irreducibleG representations are building blocks of in-
duced representations. They transform from a vector spaceV with the action of a
groupG to a vector subspaceW with the action of a subgroupU. Transmutators
with W = V are called complete, that is allU representations contained in the
G representation are included. Complete transmutators are bijections.

8. FIELDS AS INTERNAL–EXTERNAL TRANSMUTATORS

Spacetime fieldsΨ for the operational triunitU × [(U\G)repr
←× G] will be

defined to be transmutators from external groupG representations on a vector
spaceV to internal subgroupU representations on a vector subspaceW. They are
parametrized with the orbit manifoldU\G of the possibleU ’s in G

Ψ : (U\G)repr−→ W⊗ VT ,

U ×W −→ W (internal)
G× V −→ V (external)
U ⊆ G, W ⊆ V

The geometrical structure can be formulated also in a bundle language.
The internal hyperisospin groupU(2) is a maximal compact subgroup of

the external groupGL (C2) = D(12)× UL (2) with the causal group and the uni-
modular fermion-number–Lorentz-group coverUL (2)= U(12) ◦ SL(C2) as di-
rect factors. Nonlinear spacetimeD(2) parametrizes the noncompact manifold
U(2)\GL (C2).
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8.1. The Fundamental Transmutator on Nonlinear Spacetime

The fundamental spacetime field for the operational triunit

U(2)× [D(2)
←× GL (C2)]

transmutes from the defining internalU(2)-isodoublet spaceW ∼= C2 to the defin-
ing externalSL(C2)-Weyl spinor spaceV ∼= C2

ΨA
α : D(2)−→ W⊗ VT , |k| 7−→ ΨA

α (|k|)
It has the internalU(2) and the externalGL (C2) transformation behavior

U(2)×W −→ W, ΨA
α 7−→ uβαΨ

A
β

GL (C2)× V −→ V, ΨA
α (|k|g) = ΨB

α (|k|)gA
B = u(|k|, g)βαΨ

A
β (|k ◦ g|)

Since the nonlinear spacetime manifold can be parametrized as the strictly future
lightconeD(2)∼= R4

Â ⊂ R4, |k| = xÂ, of its tangent space, the spacetime trans-
lations logD(2)∼= R4, the fundamental isospinor Weyl spinor field has causal
support without spacelike particle interpretable contributions. Its spectrum with
respect to the action of the causal groupD(1) has to be investigated to find its
particle interpretable content that can be defined for all spacetime translationsR4.
First steps on this way have been tried previously.5

The fundamental isospinor–spinor dyad{ΨA
α }A=1,2
α=1,2 for the hyperisospinU(2)

orbits in the extended Lorentz groupGL (C2) can be seen in some analogy (saller,
1998b) to the tetrad{hµj }µ=0,1,2,3

j=0,1,2,3 in general relativity for the orbits of the Lorentz
groupSO0(1, 3) in the general linear groupGL (R4).

8.2. Standard Model Fields as Transmutators on Linear Spacetime

Without being able so far to determine the spectrum of the causal group action
on the fundamental transmutator for a particle interpretation one may start less
ambitiously and try to interpret the standard model fields as a linear approximation,
that is as internal–external transmutators parametrized with spacetime translations
log D(2)∼= R4

U(2)× [R4 ←× GL (C2)]

Any representation of a groupD : G −→ GL (V) is faithful up to its kernel,
a normalG subgroup, that isD[G] ∼= G/kernD. Therefore the representations of
the internal hyperisospin groupU(2)= U(12) ◦ SU(2) with U(12) ∩ SU(2)= I(2)
have as nontrivial images three groups – the full hyperisospin, the hypercharge,

5 H. saller, hep-th/0010057.
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and the isorotation group

U(2)-representation images:U(2), U(1) ∼= U(2)/SU(2)

SO(3) ∼= U(2)/U(12)

to be compared with the three nontrivial representation images of the external uni-
modular group, given by the full group, the fermion number and the Lorentz group

UL (2)-representation images:UL (2), U(1) ∼= UL (2)/SL(C2)

SO0(1, 3)∼= UL (2)/U(12)

There are three nontrivial internal–external embeddings – hyperisospinU(2)
and hyperchargeU(1) into the fermion-number–Lorentz-groupUL (2) and isoro-
tationsSO(3) into the Lorentz groupSO0(1, 3)

U(2) ↪→ UL (2), U(1) ↪→ UL (2), SO(3) ↪→ SO0(1, 3)

In the standard model the left handed Weyl isodoublet fieldL , the right handed
Weyl isosinglet fieldsR and the Lorentz vector isosinglet–isotriplet gauge fields
A are the corresponding transmutators, as mappings from the coset tangent space
log(U\G)rep−→ W⊗ VT into an internal–external vector space tensor product
with the faithful action of the represented imagesD[U ] ⊗ T [G]

L : R4 −→ C2⊗ C2 with U(2)⊗ UL (C2)

x 7−→ L A
α (x), α = 1, 2;A = 1, 2

R : R4 −→ C2⊗ C2 with U(1)⊗ UL (C2)

x 7−→ R Ȧ
1,2(x), Ȧ = 1, 2

A : R4 −→ C 4⊗ C 4 with SO(3)× SO0(1, 3)

x 7−→ A j
0,a(x), a = 1, 2, 3; j = 0, 1, 2, 3

There are two fermionic and one bosonic transmutator. With coinciding internal
and external representation space all three transmutators are complete. The right
handed two-component Weyl fieldR comprises two isosinglets{R1, R2}, and
the four-component Lorentz vector fieldA four internal degrees of freedom, an
isosinglet and an isotriplet{A0, EA}.

The transition from those standard fields for the interactions to particles for the
state space requires internal transmutators, parametrized with the Higgs degrees
of freedom (Goldstone manifold), as discussed previously herein,

v : (U(2)/U(1)+)repr−→ C2⊗ C2 with U(1)⊗ U(2)

8

M
7−→ v

(
8

M

)1,2

α

, α = 1, 2
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and external Weyl–Pauli transmutators, parametrized with the momenta as coset
representatives (boost manifold, two-sphere)

s, ŝ : (SL(C2)/SU(2))repr−→ C2⊗ C2 with SU(2)⊗ SL(C2)

q

m
7−→ s

(
q

m

)Ȧ

C

, ŝ

(
q

m

)A

C

, C = 1, 2; Ȧ, A = 1, 2

u : (SU(2)/SO(2))repr−→ C2⊗ C2 with SO(2)⊗ SU(2)

Eq
|Eq| 7−→ u

( Eq
|Eq|
)α

1,2

, α = 1, 2

The operational triunits for the internal and external interaction-particle transmu-
tations are

Higgs: U(1)× [(U(2)/U(1)+)repr
←× U(2)]

Weyl: SU(2)× [(SL(C2)/SU(2))repr
←× SL(C2)]

Pauli: SO(2)× [(SU(2)/SO(2))repr
←× SU(2)]
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